Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A class of signed joint probability measures for arbitrary quantum observables is derived and studied based on quasicharacteristic functions with symmetrized operator orderings of Margenau-Hill type. It is shown that the Wigner distribution associated with these observables can be rigorously approximated by such measures. These measures are given by affine combinations of Dirac delta distributions supported over the finite spectral range of the quantum observables and give the correct probability marginals when coarse-grained along any principal axis. We specialize to bivariate quasiprobability distributions for the spin measurements of spin- particles and derive their closed-form expressions. As a side result, we point out a connection between the convergence of these particle approximations and the Mehler-Heine theorem. Finally, we interpret the supports of these quasiprobability distributions in terms of repeated thought experiments. Published by the American Physical Society2025more » « less
-
We prove that, under some generic non-degeneracy assumptions, real analytic centrally symmetric plane domains are determined by their Dirichlet (resp. Neumann) spectra. We prove that the conditions are open-dense for real analytic strictly convex domains. One step is to use a Maslov index calculation to show that the second derivative of the defining function of a centrally symmetric domain at the endpoints of a bouncing ball orbit is a spectral invariant. This is also true for up-down symmetric domains, removing an assumption from the proof in that case.more » « less
An official website of the United States government
